About 506,000 results
Open links in new tab
  1. regression - What does it mean to regress a variable against …

    Dec 21, 2016 · Those words connote causality, but regression can work the other way round too (use Y to predict X). The independent/dependent variable language merely specifies how one …

  2. Regression with multiple dependent variables? - Cross Validated

    Nov 14, 2010 · Is it possible to have a (multiple) regression equation with two or more dependent variables? Sure, you could run two separate regression equations, one for each DV, but that …

  3. How to describe or visualize a multiple linear regression model

    Then this simplified version can be visually shown as a simple regression as this: I'm confused on this in spite of going through appropriate material on this topic. Can someone please explain to …

  4. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …

  5. regression - Converting standardized betas back to original …

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.

  6. regression - Trying to understand the fitted vs residual plot?

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …

  7. correlation - What is the difference between linear regression on y ...

    The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …

  8. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …

  9. Regression - What to do with insignificant variables?

    Sep 2, 2015 · What is the problem? What do you want to do? Will the model be used for prediction in the future, and avoid measuring those 8 variables will save money? If not, I …

  10. Outlier detection using regression - Cross Validated

    Jun 23, 2014 · Can regression be used for out lier detection. I understand that there are ways to improve a regression model by removing the outliers. But the primary aim here is not to fit a …